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Abstract In its simplest form, a random reinforcement, choice task 
experiment is one in which the subject makes choices in an attempt to guess 
the outcome of a random number generator. The subject does not know that 
the pattern is random and will try to construct different strategies to increase 
the frequency of correct guesses. Differences in the pattern of choices are 
observed when clinical populations are compared against healthy controls. 
Additionally, the choice sequences of animals obtained before and after the 
administration of drugs can show marked differences. This contribution 
identifies mathematical methods from symbolic dynamics that can be used to 
provide a quantitative characterization of the sequential structure of behavior. 

 
Introduction 
 
 In 1983 Frith and Done [1] published a seminal study of behavioral stereotypy 
in schizophrenia. This investigation has been the model for several subsequent studies. 
In a sequence of trials, subjects had to guess if a cross would appear on the left or right 
side of the screen. The position was assigned randomly. The subject did not know that 
the pattern is random and tried to construct different strategies to increase the frequency 
of correct guesses. In the Frith and Done study, normal controls, manic depressive 
subjects, patients presenting senile dementia and acute schizophrenics with positive 
symptoms (hallucinations, delusions, bizarre behavior) generated sequences of guesses 
that were “relatively random.” Acute schizophrenics with negative symptoms (affective 
flattening, alogia, apathy, anhedonia) and chronic schizophrenics generated a high 
incidence of stereotyped alternating LRLR sequences. Chronic schizophrenics 
presenting both negative symptoms and intellectual deterioration produced repetitive 
sequences (LLLL….. or RRRR…..). These results were largely confirmed by Lyon, et 
al.[ 2 ]. A large literature examining choice behavior in clinical populations has 
subsequently appeared[3].[4],[5],[6],[7],[8],9.. In most investigations, the analysis is largely 
limited to determining (1.) the frequency of each choice, (2.) switching percentages, (3.) 
the number of appearances of each of the sixteen possible tetragrams (RRRR, LLLL, 
RLRL,….), (4.) the appearances of each trigram and (5.) appearance of each two 
element pair. (As will be discussed, Paulus[5] and Magnusson[ 10 ] are a notable 



 

exceptions in this regard.) The purpose of this contribution is to identify measures from 
symbolic dynamics that can provide a more systematic characterization of the 
sequential structure of choice behavior. 
 
Mathematical Methods 
 
 The simplest measure of a symbol sequence is its Shannon information[11]. 
Suppose a message (symbol sequence) is constructed from an alphabet of k symbols, 
and suppose that ip  is the probability of the appearance of the i-th symbol in the 
message. The Shannon information is 
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It can be shown that the maximum value of I is I=1, and that this is obtained when 
k/1pi =  for all i. Frith and Done[1] found differences in information between different 

populations, but Lyon, et al.[2]  did not. Upon reflection it is seen that Shannon 
information will provide a very incomplete characterization of a message because it is 
not sequence sensitive. Consider the messages 
 
 1M  = 
AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE 
 2M  = 
BCBADCDAEBCDAAAEAAEEBCCDDEDACCBEDBDBAEEBEDCCABECDB 
 
Though they are qualitatively very different, their corresponding value of information, 
I=1, is the same since 2.ppp 521 ==== LL  in both cases. Alternative measures are 
sensitive to sequential structure. 
 
 Previous analyses of choice behaviors have looked for different substrings 
(words) in the behavior sequence. This can be made more rigorous by calculating the 
topological entropy of a message[12]. Again suppose a message is constructed from an 
alphabet of k symbols. With an alphabet of k symbols, the maximum number of 
possible words of length n is nk . By definition, all possible words appear in a random 
message. In a non-random message the number of observed words of length n grows 
with n, but not as rapidly as it does for a random message. Let N(n) be the number of 
words of length n actually observed in the message. N(n) grows exponentially at the 
rate nHT  where TH , the topological entropy is between zero and one. 
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If )n(Nlogk  is plotted as a function of n, it will have slope TH . Strictly, TH  is 
defined in the limit of infinitely long messages 
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If the message is random, then nk)n(N =  and 1HT = . Suppose the message is 
constructed by repeating a single symbol (M=LLLLL…..). In that case, N(n)=1 and 

0HT = . Intermediate values of TH  can be generated by chaotic sequences. 
 
 The topological entropy is sensitive to the appearance of each substring of 
length n, but it is insensitive to the frequency of each appearance. In contrast, the metric 
entropy incorporates a dependence on the relative frequency of each substring[13]. Let 

nS  denote a substring of length n. Let )S(F n  denote the number of times that it 
appears. The probability of nS  is )S(P n . 
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nI  is the information obtained from observing substrings of length n. 
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The information content of a substring increases with its length. 
nHI Mn α  

If nI  is plotted as a function of n, it should have a slope MH , which is the metric 
entropy. As in the case of topological entropy, metric entropy is defined mathematically 
as a limiting case. 
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If the message is composed from an alphabet of k symbols, there are nk  possible 
substrings of length n. In the case of a random sequence, each substring appears with 
equal probability, n

n k/1)S(P = . For the case of a random sequence, the sum contains 
nk  identical terms. 
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If the message is constructed by repeating a single symbol, there is only one substring 
of length n in the message, and the probability of its appearance is one. No information 
is obtained by observing a process that has a certain outcome. 0In =  and hence 

0HM = . 
 
 Several other methods for characterizing order in symbol sequences should be 
noted briefly. Frith and Done[1] reported that for healthy controls and several patient 
groups the choice pattern was “relatively random.” The Lempel-Ziv complexity[14] is an 
important method for characterizing the degree of randomness in a symbol sequence. A 
normalization of Lempel-Ziv complexity that reduces its sensitivity to the length of the 
message has been constructed[15],[16]. We have published elsewhere a detailed didactic 
presentation of this measure along with pseudocode for its calculation[ 17 ]. The 
topological entropy, metric entropy and Lempel-Ziv complexity give low values for 
regular sequences and high values for random sequences. A number of investigators 
have published definitions of complexity that give low values for both regular and 
random processes and higher values for irregular deterministic chaotic processes[18],[19], 

[ 20 ],[ 21 ]. In a series of publications, Paulus and his colleagues have used sequence 
sensitive methods to characterize choice behavior in schizophrenia patients[4].[5].[6],22. 
The fluctuation spectrum of local substring entropies was calculated. They observed 
that “schizophrenic patients exhibited significantly less consistency in their response 
selection and ordering, characterized by a greater contribution of both highly 
perseverative and highly unpredictable subsequences or responses within a test 
session[4].” 
 
What symbolic dynamics doesn’t measure 
 
 An analysis of choice behavior with methods from symbolic dynamics 
proceeds without reference to whether or not a guess was correct. Measures that, for 
example, determine the frequency of implementation of a win-stay strategy are not 
generated by an examination of the response sequence alone. The frequency of a win-
stay strategy can be informative. Its frequency is reduced in schizophrenic subjects[2]. 
The latencies (time required to respond) are not incorporated into an analysis based on 
symbolic dynamics. Magnusson[10] has constructed a measure that is sensitive to both 
choice sequence and latency. It has been applied to data obtained from schizophrenics 
by Lyon and Kemp[23]. Using this measure they found that schizophrenic and manic 
patients showed more complex patterns than controls. The complexity of the response 



 

structure was reduced by clozapine. It should be noted that it is not necessary to chose 
between measures. Several measures can be incorporated into a multivariate 
discrimination. The coefficient of determination can be used to determine which 
measures are most effective in discriminating between different groups of subjects. 
 
Discussion 
 
 The analysis of choice task behavior is not limited to studies of schizophrenia. 
Studies of perseverative behavior have been conducted with autistic patients[24] and 
with traumatic brain injury patients[ 25 ]. The experimental paradigm of choice and 
random reinforcement has a long history in animal studies[26]. Animal experiments are 
important in providing a bridge between human clinical studies and investigations of 
animal models of schizophrenia[27]. For example, Evenden and Robbins[28],[29] observed 
psychotic choice behaviors in rats treated with amphetamine. Similarly, stereotyped 
behavior has been seen in human control subjects following administration of 
amphetamine[30]. It is suggested that analysis of behavioral sequences with methods 
from symbolic dynamics will provide a more finely grained quantitative 
characterization of behavior. Further studies may show that it is possible to use 
dynamical measures of human choice performance longitudinally to assess the response 
to treatment. 
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